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Abstract. Polycrystalline cerium oxide exhibits increasing electronic and decreasing ionic conductivity upon
reduction of the grain size. In the present study, the origin of this effect was examined. Temperature-programmed
reduction (TPR) and oxygen titration measurements on nanocrystalline cerium oxide revealed a large excess oxygen
deficiency associated with the surface. Using a two-phase model for the combined system of the bulk phase in
equilibrium with a surface layer, this enhanced oxygen deficiency could be explained by a reduced binding energy
of surface oxygen ions in agreement with results from atomistic computer simulations. The model also revealed
that this segregation of oxygen vacancies is the origin of an intrinsic space charge potential. Translating this effect
to polycrystalline cerium oxide and taking into account the segregation of dopants and the accumulation/depletion
of charge carriers, it was possible to model the grain size dependence of electrical conductivity and thermopower of
polycrystalline cerium oxide. A straightforward 1-dimensional numerical model and a change from Boltzmann to
Fermi-Dirac statistics allowed to calculate the conductivity of heavily doped polycrystalline cerium oxide for grain
sizes in the range of 5–10,000 nm and acceptor concentrations up to 20%. Using this approximation, the effect of
grain size on mixed ionic/electronic conductivity and the electrolytic domain boundary was investigated.
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1. Introduction

In technical applications, electroceramic materials are
usually employed in polycrystalline form rather than
as single crystals. Hence, their physical properties
are often influenced if not even determined by the
grain boundaries, which are inevitably present in
polycrystalline materials [1–3]. The grain size of a
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material—and as a consequence the grain boundary
density—is strongly influenced by materials process-
ing. Therefore, if the specific effect of grain boundaries
is known, particular properties may be tailored through
the microstructure of the material. Whether material
processing should be aiming at a fine or coarse-grained
microstructure depends on whether grain boundaries
are advantageous or detrimental with respect to the
desired properties. The present report focusses on the
grain boundary effect in polycrystalline cerium oxide,
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which is a mixed ionic/electronic conductor (MIEC)
and which has been intensively investigated as base
material for solid electrolytes.

The physical properties and the underlying defect
chemistry of the cerium oxide bulk phase are well un-
derstood and documented in numerous experimental
studies on single crystals, or coarse grained polycrys-
talline materials in which the bulk and grain boundary
contributions could be separated [4–6]. Cerium oxide,
when doped with lower-valent cations, exhibits high
ionic conductivity due to extrinsic oxygen vacancies,
which are generated for charge compensation. On the
other hand, the loss of oxygen to the gas phase re-
sults in an increasing electronic conductivity. While
the mixing of electronic and ionic conductivity may be
desirable for certain applications (e.g. oxygen mem-
branes, electrodes) the use of cerium oxide as solid
electrolyte requires that the ionic partial conductivity
surmounts the electronic contribution (electrolytic do-
main) [7]. It is also well known that—depending on the
nature of the dopant—the formation of dopant/oxygen
vacancy associates results in a reduction of ionic con-
ductivity [8–10]. The strength of association is related
to the size mismatch of the dopant and is minimized for
Gadolinium, so that Gd-doped cerium oxide (CGO) is
currently the most frequently studied ceria-based oxy-
gen ion conductor [11–14].

In contrast to the bulk phase, there is not yet a general
agreement on the impact of grain boundaries to the
overall electrical conductivity. Apparently, the grain
boundary effect is the superposition of at least three
different contributions, which will be briefly outlined
in the following.

A first particular grain boundary effect in polycrys-
talline cerium oxide, indicated by a significant decrease
in ionic conductivity [15], was shown to be due to thin
layers of an insulating siliceous phase along the grain
boundaries [16]. This blocking effect of grain bound-
aries could be nearly eliminated by using ceria ceramics
of high purity (low Si content) [17]. Alternatively, this
problem could be overcome by changing to a polycrys-
talline ceramic with a very small grain size. It has been
demonstrated for nanocrystalline YSZ that the resis-
tance per grain boundary decreased for smaller grain
sizes as the impurities were spread over a large grain
boundary area and could not form a continuous insu-
lating layer [18].

A series of studies on nanocrystalline cerium ox-
ide ceramics revealed a second grain boundary effect
on the electrical conductivity. The most important ex-

perimental observation was an increasing electronic
conductivity as the grain size was reduced [19–26].
An analysis, based on the point defect chemistry of
bulk cerium oxide, suggested that this increase was
due to an enhanced oxygen deficiency which was at-
tributed to the grain boundaries in the nanocrystalline
materials. The assumption of an enhanced oxygen defi-
ciency was supported by a reduced apparent activation
energy of electronic conductivity, which suggested a
reduced enthalpy of reduction for the nanocrystalline
cerium oxide [19, 21–23]. The same experimental re-
sults were also analyzed in terms of a model that was
based on the existence of space charge layers along
grain boundaries [25–27]. This space charge model
was originally used to describe the conductivity en-
hancement of heterogeneous mixtures of silver halides
with insulating alumina [28] and later applied to a
variety of heterogeneous and single-phase ionic ma-
terials [26, 29–33]. When applied to polycrystalline
cerium oxide, the enhancement and grain size de-
pendence of electronic conductivity [26, 27] as well
the grain size dependence of thermopower [34] could
be consistently explained by the presence of space
charge layers with a positive space charge potential of
0.3–0.7 V.

A third possible contribution of grain boundaries
to electrical conductivity is due to segregation of
solute ions, i.e., the accumulation of solute ions in the
structural core and/or the vicinity of grain boundaries.
The bulk concentration of dopants, which are intro-
duced to the material in order to increase the extrinsic
ionic conductivity, is reduced to the extent at which
the dopants accumulate at the grain boundaries. This
indirect impact of grain boundaries on bulk properties
is significant for large segregation ratios and materials
with large specific grain boundary area, i.e. small grain
size. The segregation ratio depends on the dominating
driving force (e.g. elastic strain energy, electrostatic
energy) which is determined by the properties of the
cerium oxide host matrix and the specific nature of the
dopant. We note that segregation may be suppressed
if materials processing resulted in a non-equilibrium
distribution of solute ions (e.g. Mott-Schottky model).

The present report is aiming at a detailed analysis
of the latter two contributions which become signif-
icant when high-purity and/or fine grained materials
are employed. It is the primary intention of this report
to show, that the original idea of an enhanced oxygen
deficiency at grain boundaries as the origin of enhanced
electronic conductivity in nanocrystalline cerium oxide
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is consistent with the space charge model. As a matter
of fact, if grain boundaries exhibit an excess oxygen
deficiency, a space charge potential will generally be
established as a result of thermodynamic equilibrium
with the bulk crystallites. An important step towards
this objective is to gather complementary experimental
evidence for the excess oxygen deficiency associated
with grain boundaries or—more generally—interfaces
in cerium oxide.

Besides its prominent role in solid state ionics,
cerium oxide has been intensively investigated for
application in heterogeneous catalysis at which the
propensity of ceria to exchange oxygen with the sur-
rounding gas phase plays an important role. A com-
prehensive review of the catalytic properties of ceria-
based materials can be found in ref. [35]. In the redox
mechanism of catalytic oxidation reactions, the surface
of the oxide catalyst is continuously reduced (e.g. by
CO or hydrocarbons) and re-oxidized by oxygen [36].
The well-known application of cerium oxide in the 3-
way catalytic converter is partially based on the cyclic
release and storage of oxygen, which buffers the oscil-
lations in the composition of the fuel/air mixture thus
improving the converter efficacy [37–39]. Methods for
the characterization of catalytic properties, in particular
those that focus on surface reduction, could provide ad-
ditional insight into the defect chemistry of nanocrys-
talline materials. The approach taken in this study can
be outlined as follows. A brief summary of the defect
chemistry of the cerium oxide bulk phase, which serves
as reference state, is the starting point of the present
analysis. Macroscopic properties of surfaces/interfaces
will be characterized in the Gibbsian framework. In
particular, the Gibbsian excess oxygen deficiency of
cerium oxide surfaces will be examined and quantified
using results from temperature-programmed reduction
(TPR) and oxygen titration measurements. These ex-
perimental results will be analyzed by a point defect
model, in which the interface (surface) is treated as a
thin layer of a second phase with different defect forma-
tion energies as compared to the bulk phase [40]. This
two-phase model, which is first applied to an individ-
ual interface in equilibrium with the bulk will then be
tranfered to crystals of finite size in order to introduce
the grain size as a variable. This final step enables to
model effective properties (partial conductivities, ther-
mopower) of a polycrystalline material as function of
grain size. As noticed above, a particular aspect as-
sociated with grain size is the segregation of acceptor
ions, which are introduced into cerium oxide to en-

hance ionic conductivity. Depending on the dominat-
ing segregation mechanism (driving force), different
scaling-laws for the grain size dependence of the ef-
fective conductivities are obtained. The analysis further
allows to predict the consequences of the intrinsic grain
boundary effect on mixed ionic/electronic conductivity
and the electrolytic domain of polycrystalline cerium
oxide.

2. Volume Phase Defect Chemistry

The equilibrium concentrations of point defects in
cerium oxide can be calculated using the formalism
of defect thermodynamics [6]. The laws of mass action
for the dominant ionic disorder (Anion-Frenkel equilib-
rium) and the electronic disorder (electron-hole forma-
tion) are combined with the charge neutrality equation
(valid in the volume phase only) to obtain the con-
centrations of doubly ionized oxygen vacancies [V ··

O ],
oxygen interstitial ions [O

′′
i ], electrons n and holes p (in

principle, further defects such as neutral or singly ion-
ized oxygen vacancies could be introduced but are ex-
cluded in the present study). It has been demonstrated,
that the concentrations of holes and oxygen interstitials
in cerium oxide are negligible compared to electrons
and oxygen vacancies in the regime of oxygen partial
pressures below pO2/p◦ = 1 (p◦ = 1.013·105 Pa) [6].
Hence, it is then sufficient to consider the external equi-
librium, i.e. the exchange of oxygen between the solid
oxide and the gas phase,

Ox
O ⇀↽ V ··

O + 2e′ + 1

2
O2 (1)

with the corresponding law of mass action

[V ··
O ]n2 p1/2

O2

[Ox
O]

= K 0
R(T ) = K 0

R exp

(
− HR

kB T

)
. (2)

The material constants were taken from ref. [41] as
K 0

R = 3.73 · 106 atm−1/2 [42] and HR = 4.67 eV . In
the charge neutrality equation,

n + [A′
Ce] = 2[V ··

O ], (3)

trivalent acceptor impurities A′
Ce are included in ad-

dition to oxygen vacancies and electrons, because a
certain concentration of such lower-valent cations is
present in any real material or may be introduced



8 Tschöpe

purposely in order to increase the ionic conductiv-
ity. The concentrations of penta- or hexa-valent donors
are neglected, since corresponding elements are rarely
present in significant amounts.

A straightforward procedure to calculate the defect
concentrations was suggested by Porat and Tuller [43].
All defect concentrations in the charge neutrality equa-
tion are expressed in terms of n, pO2 , and the appropri-
ate equilibrium constants. The function to be solved in
our case is given by

pO2 (n) =
(

2K R(T )

n2(n + [A′
Ce])

)2

. (4)

Equations (3) and (4) allow to calculate the volume
concentrations n0 and [V ··

O ]0 for a given temperature,
oxygen partial pressure and acceptor concentration.

A possible and indirect experimental access to the
defect concentrations is provided by measurements of
electrical conductivity. The concentrations and the mo-
bilities of electrons and oxygen vacancies determine
the electronic and ionic partial conductivities of single
crystalline cerium oxide, respectively. In this study, the
electron mobility was taken from ref. [6] as

µe(T ) = 3.9 · 102 cm2 K
V s

T
exp

(
−0.4 eV

kB T

)
. (5)

The effective mobility of oxygen vacancies was derived
by an analysis of experimental data on microcrystalline
cerium oxide as [24]

µV ··
O (T ) = 1.5 · 102 cm2 K

V s

T
exp

(
−0.71 eV

kB T

)
. (6)

From the volume concentrations and mobilities of
charge carriers, the partial ionic and electronic con-
ductivities can be calculated for given temperature and
oxygen partial pressure as function of acceptor con-
centration (see Fig. 1). The dependence of the partial
conductivities from the acceptor concentration can be
divided into two regions; (i) low acceptor concentra-
tions, at which the conductivities are nearly indepen-
dent of [A′

Ce] and σel � σion, and (ii) high acceptor con-
centrations, at which the ionic conductivity increases
proportional to [A′

Ce] while the electronic conductivity
decreases ∝ [A′

Ce]0.5. A characteristic feature of cerium
oxide is the transition from predominantly electronic to
ionic conductivity which occurs at an intermediate ac-
ceptor concentration of roughly 1 ppm at T = 500◦C

Fig. 1. Ionic, electronic and total electrical conductivity of the cerium
oxide volume phase at T = 500◦C and pO2 /p0 = 0.21 as func-
tion of acceptor concentration (molar fraction). The cross-over from
predominantly electronic to ionic conductivity is marked by the
arrow.

and pO2/p0 = 0.21. This cross-over represents the
minimum acceptor concentration, necessary for pre-
dominantly ionic conductivity and defines the border-
line of the electrolytic domain of the volume phase.
The electrolytic domain is also limited by temperature
and oxygen partial pressure. As shown in Fig. 2, the
ionic/electronic domain boundary may be crossed by
temperature increase or decrease in oxygen partial pres-
sures. Within limits, the domain border can be shifted—
and hence the cross-over deferred—by increasing the
acceptor concentration [7, 12, 44].

Fig. 2. Boundary between the ionic and electronic domain as func-
tion of T and pO2 /p0 for two different acceptor concentrations of
0.1 and 1%.
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The defect chemistry of acceptor-doped cerium ox-
ide, as outlined above, is a first approximation since
further effects, e.g. the impact of point defect associa-
tion, were not considered. In the following, this model
for the homogeneous phase with infinite spatial extent
will serve as reference state for the analysis of the con-
tribution of interfaces.

3. Interfaces and Excess Oxygen Deficiency

A description of macroscopic thermodynamic quanti-
ties in systems, that contain interfaces, was developed
by Gibbs [45]. In this approach, the total excess of an
extensive macroscopic quantity χi , defined as

�χi = χ I
i − χ0

i , (7)

is introduced, where χ I
i and χ0

i denote the values of
χi in a system with and without interface, respectively
(see also [46, 47]). When the total excess is divided by
the interface area A of the system, the specific excess
is obtained,

{χi } = χ I
i − χ0

i

A
. (8)

A prominent example is the specific excess in the Gibbs
free energy of a polycrystalline material, which defines
the grain boundary free energy and represents the driv-
ing force for grain growth (at very small grain sizes,
the contribution of triple lines to the excess Gibbs free
energy may become significant too). More important
in the context of this study is the excess oxygen defi-
ciency or—in other words—the excess concentration
of oxygen vacancies,

�[V ··
O ] = [V ··

O ]I − [V ··
O ]0. (9)

In the following, the excess oxygen deficiency associ-
ated with surfaces of cerium oxide will be examined.
An approximate value for this excess of oxygen va-
cancies can be obtained experimentally. For instance,
the oxygen loss of metal oxide nanoparticles during re-
duction can be quantified by temperature-programmed
reduction measurements, a technique that is commonly
used for the characterization of metal oxide catalysts
[48]. The material is initially in an oxidized state and
exposed to a flow of reducing gas at low temperature. If
this initial temperature is low enough, the reduction is

Fig. 3. Hydrogen consumption during temperature-programmed re-
duction of nanocrystalline cerium oxide. The integrated peak area
(hatched) is further analyzed as function of specific surface area
[49].

prevented by the activation energy of the chemical re-
action so that the sample and the gas phase are held in a
kinetically stabilized non-equilibrium state. When the
temperature is increased, thermal activation initiates
the reduction process. By chemical gas analysis of the
effluent gas and mass balance, the amount of extracted
oxygen can be determined. A typical H2—TPR spec-
trum of nanocrystalline cerium oxide is shown in Fig. 3.
The reduction proceeds in two steps. A first reduction
peak, starting at 350◦C with a peak maximum at 500◦C,
is followed by a second increase in the rate of reduction
above 600◦C [49]. The origin of the first reduction reac-
tion can be revealed by the following analysis. It may be
assumed that the reduction associated with this peak is
the superposition of bulk reduction and an excess con-
tribution due to the surface of the nanoparticles. Then,
the total amount of hydrogen consumption should be
the sum of two terms, one being proportional to the
sample mass mS while the other is proportional to the
surface area AS of the sample,

N tot
H2

= p1mS + p2 AS, (10)

with constants p1 and p2, respectively. When divided
by the sample mass, the specific hydrogen consumption
is obtained,

N tot
H2

mS
= p1 + p2

AS

mS
, (11)
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Fig. 4. Specific hydrogen consumption during temperature-
programmed reduction of nanocrystalline cerium oxide as function
of specific surface area. The slope of the linear fit provides the specific
excess of oxygen vacancies [49].

with a linear relationship with respect to the spe-
cific surface area AS/mS. By analysis of TPR-
measurements on samples with varying specific sur-
face area, the values p1 = 10.2 ± 6.8 µmol/g and
p2 = 9.6 ± 1.4 µmol/m2 were determined, Fig. 4 [49].
If we assume that each hydrogen molecule has re-
acted with one oxygen atom to water (as confirmed
by mass spectroscopy) and that the oxygen deficiency
in the initial state was negligible, the value of p2

represents the specific excess oxygen deficiency af-
ter reduction in hydrogen at 600◦C. We note that for
AS/mS > 10 m2, this excess is one order of magni-
tude larger than the bulk oxygen deficiency p1. The
second increase in the hydrogen consumption above
600◦C is independent of the surface area and is there-
fore associated with further reduction of the bulk ma-
terial. These results provide unequivocal evidence for
a significant specific excess oxygen deficiency asso-
ciated with surfaces in cerium oxide. The value of
9.6 µmol/m2 may be compared with the number
of CeO2 formula units per unit surface area to esti-
mate the surface stoichiometry after reduction. As this
number depends on the crystallography of the sur-
face, only average values are available. For instance,
a value of 7.97 µmol/m2 was estimated by Bernal
et al. [50] which implies that a surface composition
of roughly CeO0.8 was achieved during H2—TPR. A
similar enhanced reduction was observed in ceria based
nanocrystalline porous materials using photoelectron
spectroscopy measurements, combined with in situ

oxidation-reduction treatments [51], or thermogravi-
metric analysis [52].

A major drawback of the TPR-measurements is the
non-equilibrium condition with respect to the oxygen
chemical potential. In order to characterize the ex-
cess oxygen deficiency of the interfaces in equilibrium
with the gas phase, isothermal titration measurements
have been performed. The first study on nanocrystalline
cerium oxide by coulometric titration was reported by
Porat et al. [53]. In the range of oxygen partial pres-
sures between 10−1 and 10−4 a significantly larger oxy-
gen deficiency (CeO2−x ) was observed as compared to
coarse-grained reference samples in combination with
an unusual power-law dependence x ∝ p−1/2

O2
. For low

oxygen partial pressures, the oxygen deficiency could
be characterized by volumetric titration of hydrogen-
reduced nanocrystalline cerium oxide [54]. A series of
fixed volume doses of oxygen was injected into a sam-
ple compartment of known volume, which contained a
hydrogen-reduced specimen. The equilibration of oxy-
gen chemical potential was monitored by a potentio-
metric oxygen sensor. The injections were repeated un-
til the oxygen uptake by the sample, calculated from
the mass balance, vanished. The measured quantities
allowed to calculate the specific excess oxygen vacancy
concentration as function of oxygen partial pressure for
the given temperature during the isothermal measure-
ment, Fig. 5. The maximum excess oxygen vacancy
concentration was found to be 6 µmol/m2 at 500◦C

Fig. 5. Relationship between equilibrium oxygen partial pressure
and specific surface excess oxygen deficiency, measured by volu-
metric titration at T = 500◦C. The analysis based on the space
charge model yielded a space charge potential of 0.7 V.
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and an effective oxygen partial pressure of 10−27 atm.
From these measurements, a relationship between de-
fect concentrations and thermodynamic state variables
becomes available which can be analyzed in terms of
a thermodynamic defect model.

As a first conclusion, TPR- and oxygen titration
measurements on nanocrystalline cerium oxide con-
firm a significant excess oxygen deficiency associated
with the surface. It is reasonable to connect the surface
excess oxygen deficiency with a reduced binding en-
ergy of the surface oxygen ions. However, it should be
pointed out that the mere fact of a lower temperature
for the surface reduction peak in TPR as compared to
bulk reduction is not necessarily a proof for such a re-
duced binding energy. Rather, the peak temperature is
determined by the activation energy of the chemical re-
action. By variation of the heating rate, this activation
energy can be derived from the peak temperature shift
and values of 0.6–1.0 eV were obtained from CO-TPR
and H2—TPR [55].

Regarding grain boundaries in polycrystalline
cerium oxide, an enhanced oxygen deficiency was
also recently revealed by chemical analysis using
EELS measurements [56]. While the excess oxygen
deficiency appears to be a common characteristic for
both surfaces and grain boundaries in cerium oxide,
quantitative differences may be expected due to differ-
ent degrees of unsaturation in the atomic coordination
[57]. In the following chapter, the effect of a reduced
binding energy for oxygen ions—i.e. a reduced energy
of oxygen vacancy formation—at surfaces or grain
boundaries on the overall defect equilibrium will be
investigated using the model suggested by Jamnik
et al. [40]. Furthermore, it will be shown how the
segregation of acceptor ions can be included in the
modelling of interface defect chemistry.

4. Defect Chemistry of Interfaces

4.1. Undoped Cerium Oxide

In the defect chemistry as introduced in Section (2.1),
the condition of local charge neutrality, Eq. (3), is a
fundamental ingredient associated with the symmetry
of the crystalline volume phase. In the remaining part
of this study, this condition is abandoned and replaced
by the Poisson-Boltzmann or Poisson-Fermi-Dirac
equation. This generalization is required because of the

broken symmetry of finite crystallites or polycrstalline
materials. This approach is only briefly outlined as it
has been described in numerous publications [29, 40,
58–61].

In ionic materials, point defects generally carry a net
electric charge qi = zi e0 relative to the perfect lattice,
so that the contribution of Coulomb energy to the total
energy of defect formation must be taken into account,
and

xi = Xi exp

(
−g0

i + zi e0�

kB T

)
, (12)

where xi denotes the molar fraction of the point defect,
Xi the molar fraction of potential defect sites in the
crystal lattice [62] and � the electrical potential at the
defect site with respect to a reference point. Commonly
chosen reference points are extended defects, such as
surfaces, grain boundaries or step dislocations, which
serve as source or sink for point defects. In equilib-
rium and for low defect concentrations (dilute limit),
minimization of the overall Gibbs free energy results
in a potential distribution, which is determined by the
Poisson-Boltzmann equation,

∇2�(�r )= − c0�

εε0

∑
i

zi Ci exp

(
−g0

i (�r ) + zi e0�(�r )

kB T

)
,

(13)

with the volume density of formula units � = ρNA/M
where ρ is the density and M the molar mass of the
ionic solid and NA is Avogardos constant. It was ar-
gued by Frenkel [58] and further analyzed by Kliewer
and Koehler [60] that a difference in the formation en-
ergies g0

i of the various point defects in an ionic solid is
already the origin of a space charge potential between
the bulk phase and the reference point, with respect to
which the formation energies are defined. The asymme-
try in the formation energy is balanced by the Coulomb
energy term associated with the crossing of the space
charge potential. This model has been criticized for the
assumption that the reference point is a perfect source
and sink for point defects with infinite capacity and
vanishing layer thickness. For instance, the obvious
structural differences between surface, grain bound-
aries and step dislocations are completely neglected. A
more general model was introduced by Jamnik et al.
[40], in which the interface is treated as a second phase
with a finite number of lattice-like sites and a finite
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Fig. 6. Electrical potential profile across a stack of three crystalline
layers with two external and two internal interfaces. Notice, that the
surface is the reference point for ��ext whereas ��int is related to
the potential in the bulk phase.

layer thickness. In fact, EXAFS measurements on var-
ious nanocrystalline metal oxides suggest that atoms at
grain boundaries essentially occupy lattice sites of ei-
ther one of the crystallites that meet at the grain bound-
ary [63]. The specific nature of the interface is taken
into account by different values for the defect forma-
tion energies g0

i as compared to the bulk crystallites.
The solution of the Poisson-Boltzmann equation with a
local variation of the quantities g0

i provides the equilib-
rium distribution of the electrical potential, as shown
in Fig. 6 for the example of a stack of three crystalline
layers with two external boundaries and two internal
interfaces. The space charge potential at the external
boundaries ��ex is determined by the asymmetry in
the formation energies g0

n and g0
V ··

O
as argued by Frenkel,

Kliewer and Koehler. The potential ��int at the inter-
nal interfaces is the result of a difference �g0

i in the
defect formation energy for the same defect (electrons,
oxygen vacancies, or both) between the interface layer
and the bulk. At this point, we would like to notice
that ��int is intrinsic in the sense, that it is a property
of pure cerium oxide, even in the absence of impurity
ions. The two space charge potentials are independent
in so far as ��int is a function of the �g0

i but indepen-
dent of the absolute values g0

i . This is rather important,
since the absolute values for g0

i —and hence ��ex—
are usually unknown. The only information that may be
available is the equilibrium constant of the correspond-
ing point defect reaction, which is basically the sum of
the g0

i . If the equilibrium constant is arbitrarily split
into the various contributions g0

i , the external potential
��ex is completely determined. However, the internal
potential ��int is unaffected by this arbitrary separa-
tion but depends on the differences �g0

i only. It should

Fig. 7. Concentration of electrons and oxygen vacancies as func-
tion of normalized distance from an interface for T = 500◦C,
pO2 /p0 = 0.21 and �� = 0.54 V. Comparison of numerical re-
sults and analytical approximation.

be noticed that the trilayer topology is chosen for prac-
tical reasons only in order to mask out the effect of the
external potential in the calculation. The internal in-
terface does not necessarily represent grain boundaries
only, as may be suggested by the topology, but could
also be applied to model the explicit defect chemistry
of surfaces (as an alternative to the ideal surface in the
Frenkel model).

After numerical solution of the Poisson-Boltzmann
equation, the obtained potential distribution and
Eq. (12) allow the calculation of the defect concen-
tration profiles. An example for the space charge po-
tential as function of distance from the internal inter-
face is shown in Fig. 7. In this particular example, a
difference in the energy of oxygen vacancy formation
�g0

V ··
O

= −1.9 eV between the interface and the bulk
phase was assumed, resulting in a space charge poten-
tial of ��int = 0.54 V.

In the analysis of space charge effects, the space
charge potential �� is usually handled as an empiri-
cal variable. In fact, if �� is known, the potential and
concentration profiles can also be straightforwardly de-
scribed by the Gouy-Chapman theory for charged in-
terfaces in liquid electrolytes [64, 65]. The electrical
potential at a distance ξ from the planar boundary is
given by the analytic expression [66]

�(ξ ) = 2kB T

ze0
ln

(
1 + � exp(−ξ/λ)

1 − � exp(−ξ/λ)

)
, (14)
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with two characteristic parameters, the screening
length

λ =
(

εε0kB T∑
i (zi e0)2xi0�

)1/2

(15)

and a profile parameter

� = tanh

(
ze0��

4K B T

)
, (16)

which is determined by the space charge potential ��

(The Gouy-Chapman profiles are applicable to both
��ex and ��int). The concentration profiles are ob-
tained by combining Eqs. (12) and (14) to

xi (ξ/λ)

xi0
=

(
1 + � exp(−ξ/λ)

1 − � exp(−ξ/λ)

)2

. (17)

The Gouy-Chapman model is based on the assump-
tions that the defect concentrations are low, the elec-
trolyte is symmetric (i.e. |zi | = const.), and the screen-
ing length λ is much smaller than the dimension L
of the electrolyte volume. Obviously, the numerical
solution of the Poisson-Boltzmann equation is iden-
tical to the Gouy-Chapman profile if these conditions
are met. However, the analytical model provides only
an approximation of φ(ξ ) when the electrolyte is not
symmetric as it is the case for cerium oxide. The ap-
proximation is usually acceptable, if the space charge
effect is strong. In this case, the local charge density
and hence the space charge potential profile is mainly
determined by those point defects, which exhibit the
highest concentrations and which are accumulated in
the space charge layer, whereas depleted point defects
do not significantly contribute to the charge density.
For cerium oxide with positive space charge potential,
the profile parameter � and the potential profile ��(ξ )
are determined by the concentration of electrons or ac-
ceptor ions, i.e. z1 = −1, and the corresponding con-
centration profiles can be obtained from Eq. (17). The
concentration profile for oxygen vacancies follows the
same potential profile but with a different charge z2 = 2
in Eq. (12). A comparison with the numerical result
reveals, that for the asymmetric electrolyte the screen-
ing length λ is underestimated by the Gouy-Chapman
model. It turns out that an excellent agreement with the
numerical potential profile is obtained, when a modi-
fied screening length λ∗ = √

3/2 · λ is used. Although

this modified Gouy-Chapman profile is still an approx-
imation only, one may take advantage of the straight-
forward analytical approach towards the analysis of ex-
perimental results. While λ is completely determined
by the bulk defect concentrations, the space charge po-
tential, which determines the second parameter � of
the Gouy-Chapman model, is unknown so far. As dis-
cussed above, the space charge potential ��int depends
on the differences in defect formation enthalpies. As
shown in Appendix A, an approximate relationship be-
tween the space charge potential and the difference in
the formation energies for oxygen vacancies can be de-
rived (under the assumption that �φint is dominated by
�g0

V ··
O

) as

��int ≈ −2

5

[
kB T ln(2λ ∗ �1/3) + �g0

V ··
O

]
. (18)

The Gouy-Chapman approximation for the space
charge model can now be employed for a quantita-
tive analysis of the oxygen titration measurements on
nanocrystalline cerium oxide. By comparison with the
experimental results, the space charge potential of the
cerium oxide surfaces and the corresponding differ-
ence in the enthalpy of oxygen vacancy formation will
be determined. For comparison, space charge poten-
tials will be calculated numerically, based on defect
formation energies for cerium oxide surfaces, which
were derived from atomistic computer simulations and
reported in the literature.

For large effects (� ≈ −1) the excess charge
in the space charge layer is dominated by the accu-
mulated electrons. Integration of the electron density
across the space charge layer yields the specific excess
[27],

{n} = −4
λ∗�

1 + �
· nbulk. (19)

If we assume that the excess oxygen vacancies at the
surface provide the counter charge to the space charge
layer, the specific excess {[V ··

O ]}surf = 0.5{n}scl is ob-
tained. The bulk defect concentrations and Eqs. (15),
(16) and (19) then allow to calculate the specific
excess oxygen vacancy concentration as function of
T, pO2/p0, [A′

Ce] and ��. A fit of this model to the
experimental results obtained by oxygen titration mea-
surements is shown in Fig. 5 and yielded a space
charge potential of �� = 0.7 V. With Eq. (30) (see
Appendix A) this value translates to a difference in
the energy of oxygen vacancy formation of �g0

V ··
O

≈
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−2.3 eV for the surface. This value may be compared
with results obtained from computer simulations.

The enthalpy of the oxygen exchange equilibrium at
cerium oxide surfaces has been calculated by atomistic
computer simulation [67–70]. For all investigated crys-
tallographic orientations, this enthalpy was found to be
smaller as compared to the bulk value, which implies
that the surfaces are more reduced than the bulk phase.
According to the study by Balducci et al., the lower
enthalpy is limited to the first 1–2 crystalline layers
only [70]. Calculated differences in �HR were rang-
ing form −3.87 eV for (111), −7.05 eV for (110) to
−12.83 eV for the (310) surface [67, 68] and similar but
slightly smaller values were reported by Conesa [69].
It should be noticed that this quantity has two charac-
teristic contributions; the differences in (i) the energy
for oxygen vacancy formation, and (ii) the energy to
substitute Ce4+ by Ce3+ between the surface and the
bulk. Both components are independent and represent
the segregation energies for oxygen vacancies and elec-
trons, respectively. The net charge at the interface is
then depending on the balance between vacancy and
electron segregation. If both defects segregate simulta-
neously and proportional, the surface remains neutral.
However, at large segregation enthalpies for both de-
fects, the surface of cerium oxide will always possess
a positive excess charge, provided the oxygen vacan-
cies are fully ionized and cerium is not reduced to ox-
idation states below Ce3+. In the most extreme case,
a stoichiometry of Ce3+O−2

0 would be reached at the
interface. Based on the segregation energies obtained
from ref. [68], the space charge potentials were calcu-
lated for the various surfaces (Table 1). Even though
the segregation enthalpies for electrons are larger as
compared to vacancies, the latter dominate the excess
charge at the interface and hence the space charge po-
tential. Only for the most stable (111) surface, a neg-
ative space charge potential is expected. Recent mea-
surements of the electronic structure of cerium oxide
(111) surfaces by photoelectron spectroscopy (UPS) re-

Table 1. Space charge potential at various surfaces, ob-
tained by numerical solution of the Poisson-Boltzmann
equation, using defect formation energies from ref. [68].

Surface �g0
V ··

O
(eV) �g0

n (eV) ��int (V)

(111) −0.4 −1.73 −0.39
(110) −1.5 −2.78 0.15
(310) −2.47 −5.18 0.64

vealed a band bending with increasing EV − EF , which
suggested the existence of a surface dipole with posi-
tive excess charge in the interface and a negative space
charge layer [71]. The apparent contradiction with the
expected negative surface charge may be due to the
non-equilibrium conditions during UPS measurements
in ultrahigh vacuum.

A comparison of the space charge potential �� =
0.7 V obtained from the analysis of the oxygen titration
measurement with the values given in Table 1 reveals
a good agreement with the computer simulation of the
(310) surface, i.e. the surface with the lowest symmetry,
but significant differences with respect to the values for
the two most stable surface structures. It is important to
notice, that special surfaces, which were investigated
in the computer simulation, are not necessarily repre-
sentative for the surfaces of nanocrystalline particles.
Furthermore, the experimental studies were performed
on large ensembles of crystallites so that only average
properties were measured. This situation is compara-
ble to the grain boundary excess free energy, which
is also known to depend on the particular crystallog-
raphy. Coincidence grain boundaries with high sym-
metry exhibit particularly small excess free energies
as compared to general grain boundaries. The mea-
sured average value for a given polycrystalline sample
is determined by the crystallite orientation distribution
function (ODF) and the grain boundary misorientation
distribution function (BMD) [72]. If the sample is ho-
mogeneous and isotropic in both distribution functions,
the macroscopic average value is well defined but can
be significantly different from the values for the special
boundaries. With respect to the present study, it may
therefore not be surprising that the average value for the
space charge potential, obtained from the analysis of
the titration measurement, is larger than the individual
values for the two most stable surfaces.

In the present analysis, only fully ionized oxygen
vacancies are taken into account while the contribution
of singly ionized or neutral oxygen vacancies as
well as adsorbed oxygen was neglected. Porat et al.
observed an unusual power-law dependence of the
oxygen uptake of nanocrystalline cerium oxide during
titration measurements with an exponent −1/2 [43].
Two alternative explanations for this behavior were
discussed. The results could be explained by lower
ionization states of oxygen vacancies but also by the
adsorption of oxygen on the cerium oxide surface. In
fact, ionosorption of oxygen on metal oxide surfaces,
involving various species of different ionization and
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dissociation (O−
2 , O2−

2 , O−) are a well established [36].
It can be assumed that the contribution of adsorption
phenomena to titration measurements may be larger at
the high oxygen partial pressures, employed by Porat,
as compared to the very low partial pressures, used in
the present study. In a recent thermogravimetric study,
Kim et al. analyzed the partial pressure dependence of
oxygen stoichiometry and suggested that a significant
fraction of oxygen was present in lower ioniza-
tion states [73]. However, the experimental results
also revealed that—under the given experimental
conditions—the sample properties were significantly
affected by the preparation method. In that case, there
are various possible explanations for the observed
behavior. For instance, chemical residues of the
synthesis process, e.g. carbonates or carboxylates, are
known to be very stable on cerium oxide even at tem-
peratures as high as 500◦C [74]. Such adsorbates could
influence the surface defect chemistry, particularly at
low oxygen vacancy concentrations, i.e. high oxygen
partial pressures. Another explanation for the different
experimental results could be a preferential formation
of certain surfaces depending on the synthesis method.
Based on the present experimental evidence, the
limitation of the space charge model to fully ionized
oxygen vacancies appears to be reasonable.

So far, we have concentrated on oxygen vacan-
cies and electrons, which are the native defects in
cerium oxide. In the following, the impact of inter-
faces on acceptor dopants will be discussed. As these
defects are extrinsic in nature and hence their concen-
trations fixed for a given material, the effect of inter-
faces is essentially limited to a redistribution of ions and
the concomitant indirect influence on the local defect
equilibrium.

4.2. Doped Cerium Oxide

The segregation of foreign atoms in a host matrix is a
prominent topic in materials science and specific mod-
els for ionic solids have been developed, in which the
electrostatic interaction between charged solute ions
and the space charge potential, the elastic energy due
to size misfit of the solute ion in the host matrix, and
the dipole interactions between solute-vacancy dipoles
and the electric field in the space charge layers are con-
sidered as possible driving forces for segregation [75].
If we assume that no driving force for segregation of

Fig. 8. Schematic concentration profiles of impurity ions perpen-
dicular to a grain boundary for the case of (a) no segregation, (b)
Langmuir-McLean type segregation, driven by size mismatch, (c)
space charge segregation without size mismatch and (d) the combi-
nation of (b) and (c).

the solute exists, which would correspond to a neutral
defect with perfect matching of atomic size, we expect
a homogeneous distribution of the solute in the crystal
lattice and the interface, Fig. 8(a). The same flat concen-
tration profile is also considered in the Mott-Schottky
model, in which equilibrium segregation of solute ions
is prohibited by an activation energy barrier (leading
to a non-equilibrium state). A size mismatch of the so-
lute ion in the host matrix results in an elastic strain
energy contribution to the overall enthalpy of mixing.
If the size misfit can be accommodated in the struc-
tural core of an interface, the elastic strain energy hε

is gained upon segregation, leading to a concentration
profile as sketched in Fig. 8(b). A common approach
to estimate the elastic strain energy associated with a
solute atom in a matrix is to use a relationship obtained
in continuum-elasticity theory [76]

hε = −24πKGRm Rs(Rs − Rm)2

4GRm + 3KRs
(20)

where Rm and Rs are the ionic radii of matrix and
solute, K is the bulk modulus of the solute, and G
is the shear modulus of the matrix. The two moduli
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can be calculated from literature values for the elastic
constants C11 = 403 GPa, C12 = 105 GPa and C44 =
60 GPa [77] and the relationships K = (1/3)(C11 +
2C12) = 204 GPa and G−1 = 0.6/C44 + 0.2/(C11 +
C12) = 86 GPa [78, 79]. With RCe4+ = 97 pm, we ob-
tain hε, G3

d+ = 0.05 eV (R = 105 pm) and hε, L3+
a =

0.38 eV (R = 118 pm).
In equilibrium, the accumulation of solute ions at the

interface can be described by the Langmuir-McLean
adsorption isotherm, which is given in the dilute limit
by

�

1 − �
≈ xbulk exp

(
− hseg

kB T

)
, (21)

with � being the fraction of occupied segregation sites
and hseg ≈ hε the enthalpy of segregation.

Acceptor ions can be incorporated into the numeri-
cal model for the solution of the defect equilibrium by
the assignment of a formal energy of formation g0

ACe

which is treated as an adjustable variable to control the
acceptor concentration. The enthalpy of solute segre-
gation is then identical to the difference between the
interface and bulk value of the formation enthalpy, i.e.
�g0

ACe
= hseg.

The segregation—driven by size mismatch—of so-
lute ions which also carry a net charge may contribute
to the formation of a space charge potential. Similar to
the segregation of the native defects, the overall charge
at the interface core determines the space charge po-
tential. Also similar to the segregation of electrons, the
space charge potential is still dominated by the accumu-
lation of oxygen vacancies for large �g0

V ··
O

. Neverthe-
less, the solute ion distribution in equilibrium follows
the electrical potential, Fig. 8(c). As a result, solute
ions with negligible size mismatch may still exhibit
significant segregation due to a space charge potential
that is generated by the segregation of oxygen vacan-
cies. Such a behavior may be expected for Gd-doped
cerium oxide, in which the rather small size mismatch
yields a segregation energy of only 0.05 eV. If size
mismatch and electrostatic interaction occur simulta-
neously, a concentration profile as sketched in Fig. 8(d)
is expected.

Any of these different situations can be analyzed
using a numerical solution of the Poisson- Boltzmann
equation. If space charge segregation dominates, the
Gouy-Chapman model may also be alternatively used
[27]. However, it is important to notice that for posi-
tive space charge potentials, the concentration of neg-

atively charged acceptor ions close to the boundary
easily exceeds values of 0.5 molar fraction so that the
Boltzmann-formalism, which was derived for the di-
lute limit, must be replaced by Fermi-Dirac statistics.
Essentially, this means that the equilibrium concentra-
tions of defects are given by

xi = Xi
δi

1 + δi
, (22)

with

δi = exp

(
−g0

i + zi e0�

kB T

)
. (23)

When compared with Eq. (12), a relative error of 10%
is obtained for xi ≈ 0.11. While the analytical Gouy-
Chapman model is no longer appropriate for high de-
fect concentrations, the Fermi-Dirac factor can be eas-
ily implemented in the numerical model.

In this chapter, the defect equilibrium of the com-
bined thermodynamic system consisting of a crys-
talline phase and an individual interface was described.
The specific defect chemistry of interfaces is addressed
by introducing differences in the enthalpies of defect
formation. In the following, the obtained results will be
applied to model particles of finite size (i.e. confined
in three dimensions by a closed interface) in order to
introduce the grain size as a variable. Such particles are
also considered to be the building units of a polycrys-
talline material. The effect of the interfaces becomes
apparent in the grain size dependence of a given phys-
ical or chemical property.

5. Cerium Oxide Particles

5.1. Excess Oxygen Deficiency

Stereological analysis [80] shows, that the specific in-
terface area A/V is given by

A

V
= 2α

〈L〉 area
(24)

where 〈L〉area is the area-weighted mean intercept
length (denoted L in the following) and α = 1 for
the specific grain boundary area in polycrystalline ma-
terials while α = 2 for the specific surface area of
isolated particles. The characteristic size of the crys-
tallites 〈L〉area can be determined by applying the line
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intercept method on micrographs [80] or by analysis of
X-ray diffraction peak profiles [81].

The excess oxygen deficiency (or excess concentra-
tion of oxygen vacancies) was defined above in Eq. (9).
A closer look at the concentration profile of oxygen va-
cancies perpendicular to an interface (Fig. 7) reveals,
that the specific excess has two contributions with dif-
ferent characteristic length scales; (i) a positive excess,
confined to the structural core of the interfaces with a
layer thickness of 0.5–1 nm, and (ii) a negative excess,
which is associated with the depletion layer and which
is characterized by the screening length λ. When the
size of a finite crystal is reduced to the range of L ≤ λ,
the depletion layers overlap so that their contribution
is no longer proportional to the interface area, in other
words, to the inverse grain size. As a result, the com-
bined specific excess oxygen deficiency is no longer a
constant but decreases when the grain size is reduced
to values below the screening length, Fig. 9. This effect
is apparently not significant in TPR or oxygen titration
measurements due to the small screening length of less
than 10 nm at the low oxygen partial pressures during
these measurements. Nevertheless, the spatial extent
of space charge layers perpendicular to the interface
renders these boundary layers to three-dimensional ob-
jects which results in deviations from the characteristic
scaling laws for interfaces when the grain size becomes
comparable to the screening length.

Fig. 9. Specific excess oxygen deficiency at T = 500◦C, pO2 /p0 =
0.21 and �� = 0.58 V as function of grain size. The drop below
λ∗ is caused by the enhanced depletion of overlapping space charge
layers.

5.2. Total and Bulk Acceptor Concentration

For practical reasons, experimental studies on the grain
size dependence of a physical or chemical property are
typically performed on samples of a fixed composi-
tion with respect to the cations (the concentration of
the volatile oxygen anions is determined by the exter-
nal equilibrium). Therefore, an accumulation of solute
ions at interfaces inevitably causes a decrease in the
residual bulk concentration since the total concentra-
tion is constant,

[A′
Ce]tot = [A′

Ce]bulk + 2α

L
� · γ −1/3 (25)

If the solute ions do not segregate (� = 0), ei-
ther because there is no driving force or because they
are quenched in a flat non-equilibrium distribution, the
residual bulk concentration is independent of grain size
and identical to the total concentration, Fig. 10. A size
mismatch between solute ions and the corresponding
matrix ions results in a driving force for segregation
into the interface layer as described above. In equilib-
rium, the residual bulk concentration can be calculated
from Eqs. (21) and (25) for a given total concentra-
tion and segregation enthalpy, Fig. 10. For small grain
sizes and moderate total concentrations, the amount of
segregated solute is proportional to the specific inter-
face area, i.e. ∝ L−1, and residual bulk concentrations

Fig. 10. Residual bulk acceptor concentration as function of the
grain size of a polycrystalline material in the case of (a) no seg-
regation, (b) Langmuir-McLean type segregation, and (c) space
charge segregation ([A′

Ce]tot = 500 ppm, T = 500◦C, hseg = −0.5 eV,
�� = 0.58 V).
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follows a power-law dependence [A′
Ce]bulk ∝ L . How-

ever, if the solute ions do not exhibit a significant size
mismatch but segregate into space charge layers due
to electrostatic interaction, a different power-law is ob-
tained. The origin for this difference is the correlation
between the screening length and the bulk concentra-
tion of acceptor ions. When charged solute ions accu-
mulate in space charge layers, their bulk concentration
decreases which in turn increases the screening length
λ leading to a further segregation of the solute. The
analysis of the overall defect equilibrium revealed a
power-law dependence [A′

Ce]bulk ∝ L2.
Taking into account the important impact of accep-

tor ions to the bulk defect chemistry of cerium oxide,
the various segregation mechanisms will certainly in-
fluence the grain size dependence of electrical conduc-
tivity in a characteristic way. Furthermore, electrons
and oxygen vacancies as the charge carriers of the elec-
tronic and ionic current are affected by the space charge
layers. In particular, electrons are accumulated while
oxygen vacancies are depleted in space charge layers
for �� > 0 so that the grain boundary effect on the
partial conductivities should be rather different. The
result of these effects will be briefly analyzed in the
following chapter.

6. Effective Electrical Conductivity
in Polycrystalline Cerium Oxide

The brick-layer model (BLM) is commonly used to
calculate the effective electrical conductivity of a poly-
crystalline material. Based on the equivalent circuit of
the BLM, the partial electronic and ionic conductivity
of cubic cerium oxide crystals with space charge layers
perpendicular and parallel to the direction of the elec-
tric field has been calculated by appropriate integration
of the local conductivities. For further details, we refer
to [27, 82]. However, this BLM is applicable only, if the
grain size is large as compared to the screening length
λ. For small grain sizes, other approaches are required.
One possibility is to investigate the flat-band limit, i.e.
when L � λ [83].

Experimental data on the electrical conductivity of
nanocrystalline cerium oxide are available in a range of
grain sizes, which is neither covered by the BLM nor
by the flat-band limit. In this mesoscopic range, mod-
elling of grain size dependent conductivity requires a
numerical analysis. For this purpose, methods that were

developed for the simulation of semiconductor devices
have been applied to mixed conductive cerium oxide.
The simulation involves the solution of the Poisson-
Boltzmann equation in three dimensions to obtain the
equilibrium charge carrier distribution, followed by
the solution of the drift-diffusion equations, which de-
scribe the non-equilibrium process of charge transport.
Due to the computational expenditure, this approach is
limited to small particle sizes. Further details can be
found in ref. [84]. All three models could be combined
to calculate the grain size dependence of the partial
electrical conductivities in cerium oxide under the as-
sumption that space charge layers exist and all defects
are distributed in equilibrium. As shown in Fig. 11, a
positive space charge potential results in a decreasing
ionic and increasing electronic partial conductivity as
the grain size is reduced into the nm regime. A compar-
ison with the experimental results allowed to determine
the value of the space charge potential as �� = 0.7 V,
Fig. 11. It was further observed, that the electronic
conductivity follows an L−3 power-law in the meso-
scopic transition regime. This power-law dependence
is also characteristic for the equilibrium space charge
model as other exponents are expected for Langmuir-
McLean-type segregation (L−2) or the Mott-Schottky
model with a flat acceptor concentration distribution
(L−1) [85].

In the given example, a transition from predomi-
nantly ionic to electronic bulk conductivity occurred at

Fig. 11. Grain size dependence of electronic and ionic conductivity
of cerium oxide as function of grain size. Analysis of experimental
results by the space charge model revealed a space charge potential
of 0.7 V [84].



Interface Defect Chemistry and Effective Conductivity 19

a grain size of ≈90 nm. The transition from ionic to
electronic conductivity was further confirmed by mea-
surements of the grain size dependent thermopower of
polycrystalline cerium oxide. The Seebeck-coefficient
of a mixed conductor is determined by the partial ionic
and electronic contributions, weighted by the ionic and
electronic transference numbers. Furthermore, the sign
of the partial Seebeck coefficient reflects the sign of the
majority carrier charge which is positive for αion and
negative for αel. The transition from ionic to electronic
conductivity is therefore evident from the change in
sign of the total Seebeck coefficient, Fig. 12. The ana-
lysis of experimental results revealed a space charge
potential of 0.7 ± 0.05 V.

Obviously, the electrolytic domain of cerium oxide
is not only limited by acceptor concentration, tempera-
ture and oxygen partial pressure but also by grain size.
A transition from the ionic to the electronic domain
is expected upon reduction of grain size and the criti-
cal grain size decreases with increasing acceptor con-
centration. The extension of the space charge model
to higher acceptor concentrations requires a numeri-
cal analysis of the Poisson-Fermi-Dirac equation. It is
further desirable to find a single approach to calcu-
late electrical conductivity for a wide range of grain
sizes. Both requirements are met by the trilayer crystal
model, described in Section 4.1. The layer thickness
in this one-dimensional model is not limited by com-
puting power and the application of the Fermi-Dirac

Fig. 12. Grain size dependence of the Seebeck coeficient of cerium
oxide as function of grain size. Analysis of experimental results by
the space charge model revealed a space charge potential of 0.7 V
[34].

factor for the calculation of high defect concentrations
is readily implemented. However, it is necessary to ac-
cept the compromise associated with the transfer of
the one-dimensional potential and defect concentration
profiles obtained for the trilayer topology to a three-
dimensional particle. A reasonable approximation is
obtained, if we consider a cubic crystal that is assem-
bled from 6 square-pyramidal fragments, which were
cut out from the trilayer crystal as shown in Fig. 16.
A straightforward geometrical analysis yields an ap-
proximation for the integrated acceptor concentration
(Appendix 2). The calculation of partial conductivi-
ties is simplified by the fact that the ionic conductivity
αdc,ion is dominated by space charge layers perpendic-
ular to the direction of the current, while αdc,el is domi-
nated by the space charge layers parallel to the direction
of the current (Appendix 2).

This model allows to calculate the partial conduc-
tivities of cerium oxide as a function of temperature,
oxygen partial pressure, a wide range of grain sizes
and even high acceptor concentrations [A′

Ce], Fig. 13.
As expected, the bulk conductivity is dominated by
the ionic contribution for a grain size of 1000 nm
and [A′

Ce] > 10−3 at 500◦C and pO2 /p0 = 0.21. The
ionic bulk conductivity is proportional to the total ac-
ceptor concentration for [A′

Ce] ≥ 10−3 but not below
because the influence of space charge segregation be-
comes significant in this concentration range. The dc-
conductivity exhibits a transition from electronic to

Fig. 13. Bulk and dc electrical conductivity of polycrystalline cerium
oxide (1 µm grain size) at T = 500◦C as function of acceptor con-
centration. The minimum in σdc as associated with the transition
from predominantly electronic to ionic conductivity and defines the
domain boundary.
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Fig. 14. Ionic/Electronic domain boundary for polycrystalline
cerium oxide at T = 500◦C as function of grain size and accep-
tor concentration. The various lines correspond to different values of
�g0

V ··
O

.

ionic conductivity at [A′
Ce] ≈ 10−3 for the given grain

size. This calculation was repeated for various grain
sizes to obtain the combinations of grain size and ac-
ceptor concentration, which define the borderline of
the electrolytic domain, Fig. 14. A significant grain
boundary effect on the electrolytic domain is predicted.
At acceptor concentrations exceeding 10%, which are
typically employed in solid electrolytes, the domain
boundary is crossed at a grain size of ≈ 20 nm. It is
also interesting to estimate the mixed electronic/ionic
conductivity along the borderline (defined by the con-
dition αdc,ion = αdc,el), Fig. 15. The mixed conductivity
increases with decreasing grain size. If compared with
the corresponding value for single crystalline cerium
oxide (see Fig. 1), the mixed conductivity of polycrys-
talline cerium oxide is smaller at large grain sizes but
significantly larger in the nanometer-regime. It is also
evident from Fig. 13 that the intrinsic grain bound-
ary effect becomes smaller at large grain sizes and
high acceptor concentrations. In fact, the calculated
conductivities agree well with experimental results ob-
tained for heavily doped microcrystalline cerium oxide
electrolytes (see Fig. 3 in ref. [13]) except for the ap-
pearance of a characteristic maximum conductivity at
[A′

Ce] ≈ 15%, which has been attributed to a corre-
lation effect in the oxygen vacancy jump process at
high vacancy concentrations [86, 87]. This particular
effect is not related to the presence of interfaces and
was therefore not included in the model.

Fig. 15. Mixed ionic/electronic conductivity of polycrystalline
cerium oxide at T = 500◦C as function of grain size. The various
lines correspond to different values of �g0

V ··
O

.

Significant effects of grain size on the electrical
conductivity have been reported for various nanocrys-
talline metals oxides, including TiO2 [88], ZnO [89],
Y-doped ZrO2 and Yb-doped SrCeO3 [90]. Whether
these effects arise from changes in charge carrier mo-
bilities (enhanced diffusion in the gb core) or charge
carrier densities (which may be significantly modified
by the contribution of the interface layer) needs to be
evaluated in each case. The recent studies on cerium
oxide demonstrated that segregation of point defects in
ionic materials, which can be assumed to be a common
phenomenon, should generally result in the formation
of space charge layers and may have a significant ef-
fect on the properties of polycrystalline electroceramic
materials. These intrinsic effects might be masked by
other contributions (such as the blocking effect of an
insulating phase on ionic conductivity). Furthermore,
the materials engineering using space charge effects, as
demonstrated by a few examples (e.g. varistor, conduc-
tivity enhancement by heterogeneous doping), could
become a more general approach that has yet to be
explored.

7. Summary

The defect chemistry of nanocrystalline cerium ox-
ide was described on the basis of the equilibrium be-
tween the bulk phase and an interface layer, which are
characterized by different defect formation enthalpies.
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Temperature-programmed reduction and oxygen titra-
tion measurements revealed a significant excess oxy-
gen deficiency associated with the surface of cerium
oxide nanoparticles. These results suggested a reduced
enthalpy of oxygen vacancy formation at the surface. In
equilibrium, such a local variation in defect formation
energies is the source of space charge layers. The par-
tial pressure dependence of surface oxygen deficiency
was quantitatively described by the space charge model
with a difference in the enthalpy of oxygen vacancy
formation of −2.3 eV . The space charge model was
further applied to investigate the grain size dependence
of the defect chemistry in acceptor-doped cerium oxide
and to model electrical conductivity of polycrystalline
cerium oxide. Numerical modelling of the defect chem-
istry and electrical conductivity at high acceptor con-
centrations was presented. This approach allowed to
predict the impact of grain size in combination with
dopant concentration on mixed conductivity and the
electrolytic domain boundary.

Appendix A

We consider pure cerium oxide without a significant
concentration of altervalent impurity ions, so that the
Brouwer approximation n = 2[V ··

O ] holds. The con-
centrations of oxygen vacancies in the bulk and at the
interface (s) are gives as (see Fig. 6)

[V ··
O ]bulk

[Ox
O]

= exp

(
−g0V ··

O,bulk + 2e0�ext

kB T

)
, (26)

and

[V ··
O ]s

[Ox
O]

= exp

(
−

g0
V ··

O,s
+ 2e0�ext + 2e0�int

kB T

)
, (27)

respectively. Both equations can be combined to cal-
culate the difference in the energy of oxygen vacancy
formation,

�g0
V ··

O
= g0

V ··
o,s

− g0V ··
O,bulk

= −2e0�int − kB T ln

(
[V ··

O ]s

[V ··
o ]bulk

)
. (28)

Please notice, that �ext cancelles in Eq. (28) so that
the arbitrary choice of individual defect formation en-
thalpies is not significant. The oxygen vacancies at the

interface provide the positive countercharge to the neg-
ative space charge Qsc (in units C · m−2), which is
dominated by the accumulation of electrons,

Qsc ≈ −e0{n}� = −e02λn
−2�

1 + �
�

≈ −e02λ2�[V ··
O ]bulk exp

(
�int

2kB T

)
. (29)

Here, we make use of the approximation

−2�

1 + �
≈ exp

(
�int

2kB T

)
. (30)

With [V ··
O ]s = −Qsc/(2e0�

2/3) and Eq. (28), we finally
obtain

�g0
V ··

O
= −5

2
e0�int − kB T ln (2λ�1/3). (31)

Appendix B

In order to calculate the total acceptor concentration in
a cubic crystal from the concentration profile, obtained
for the one-dimensional problem of the trilayer crystal,
we consider the cube to be composed of six square-
pyramidal fragments, as shown in Fig. 16. The total

Fig. 16. For the calculation of the total acceptor concentration in a
cubic crystal from the onedimensional concentration profile of the
three-layer crystal, the cube is assumed to be assembled of 6 equal
square-pyramidal fragments.
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concentration in a cube of size L3 can be calculated
from the linear concentration profile [A′

Ce](ξ ) as

[A′
Ce] = 6

L3

∫ L/2

0
[A′

Ce](ξ ) · (L − 2ξ )2 dξ. (32)

The calculation of the ionic conductivity can be simpli-
fied by neglecting the contribution of the highly resis-
tive space charge layers parallel to the direction of the
current (a typical approximation in the BLM), resulting
in

σ−1
ion = 2

L

∫ L/2

0
σ−1

ion (ξ ) dξ (33)

Similarly, the highly conductive space charge layers in
series can be neglected in the calculation of the elec-
tronic conductivity, while the local conductivites are
integrated over the four space charge layers in parallel,

σel = 4

L2

∫ L/2

0
σel(ξ )L dξ. (34)
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